
目标检测技术作为视觉技术届的顶梁柱,不仅单兵作战在人脸、车辆、商品、缺陷检测等场景有出色的表现,也是文本识别,图像检索、视频分析、目标跟踪等复合技术的核心模块,应用场景可谓比比皆是。
各界开发者对高精度、高效率的目标检测算法,以及便捷高效的开发、部署方式的追求可谓是极致的。但业界却缺少全面兼顾高性能算法、便捷开发、高效训练及完备部署的开源目标检测项目。百度飞桨端到端目标检测开发套件PaddleDetection重磅升级为2.0版本后,终于全面兼顾业界开发者的需求,成长为中国产业实践中目标检测领域一柄重器。
让我们先来概览一下PaddleDetection2.0本次升级内容:
一、全明星算法阵容:
新增超越YOLOv4、YOLOv5 的PP-YOLOv2,1.3M 超超超轻量目标检测算法PP-YOLO Tiny,全面领先同类框架的RCNN系列算法,以及SOTA 的Anchor Free算法:PAFNet(Paddle Anchor Free)
二、全面功能覆盖:
除全系列通用目标检测算法外,额外覆盖旋转框检测、实例分割、行人检测、人脸检测、车辆检测等垂类任务。
三、易用性全面提升:
全面支持动态图开发,压缩、部署等全流程方案打通,极大程度的提升了用户开发的易用性,加速了算法产业应用落地的速度。
图1 PaddleDetection2.0明星通用目标检测模型的性能
而本篇也将为大家详细解读一下PaddleDetection2.0的升级内容,初步领略下这个检测重器的 伤力:
一、更多更好的算法
1. PP-YOLOv2,比YOLOv4、YOLOv5更强!
自去年PP-YOLO一度成为产业实践 佳目标检测模型后,随着PaddleDetection2.0的发布,PP-YOLO也推出了v2版本。延续v1版本的理念,PP-YOLOv2持续深化考虑在产业实践中需要兼顾算法的精度和速度,PP-YOLOv2(R50)mAP从45.9%达到了49.5%,相较v1提升了3.6个百分点,FPS高达106.5FPS,超越了YOLOv4甚至YOLOv5!而如果使用RestNet101作为骨架网络,PP-YOLOv2(R101)的mAP更高达50.3%,并且比同等精度下的YOLOv5x快15.9%。
你无需再在眼花缭乱的目标检测算法中对比选择,用PP-YOLOv2就对了!
图 2 PP-YOLOv2 性能比较
2. PP-YOLO Tiny,1.3M,比YOLO-Fastest、NanoDet更轻量!
随着物联网的快速发展,端侧芯片部署轻量化深度学习算法的需求越来越强烈,基于此,PaddleDetection 2.0 推出了经过深度优化后,体积仅为1.3M的超超超轻量目标检测算法—PP-YOLO Tiny。如下表所示,在coco val2017数据集测试,输入尺寸320px版本,mAP达到20.6,单张预测时延10.83ms(92.3FPS);输入尺寸416px版本,mAP达到22.7,单张预测时延15.48ms(64.6FPS)。比YOLO-Fastest、 NanoDet更强。
图 3 PP-YOLO Tiny性能
3. RCNN系列算法全面超越同类开发工具!
除了YOLO系列之外,PaddleDetection2.0 还将目标检测的基础两阶段系列算法--RCNN进行了整体升级。如表1可以清晰的看到,RCNN系列模型(Faster RCNN, Mask RCNN, Cascade RCNN等)在PaddleDetection进行训练,比mmDetection和Detectron2在更短的时间获得更高的精度。
表1:RCNN系列模型在PaddleDetection、mmDetection和Detectron2开发套件下,在COCO 2017 val集上的mAP对比结果
4. SOTA Anchor Free算法:PAFNet(Paddle Anchor Free)& PAFNet-Lite
相较于SSD、RCNN等系列各种Anchor-Based算法,Anchor-Free算法拥有更少的超参、更易配置、对多尺度目标检测效果更好等优点,但也存在检测结果不稳定、训练时间长等问题,是近些年科研领域的热点方向。飞桨当然一直紧跟全球科研动向,基于TTFNet进行多维度的优化,推出了在COCO数据集精度42.2,V100预测速度67FPS, 处于anchor free领域SOTA水平的PAFNet(Paddle Anchor Free)算法!同时提供移动端轻量级模型PAFNet-Lite,COCO数据集精度达到23.9,麒麟990芯片延时26ms。
图 4 PAFNet网络结构
5. 旋转框检测算法—S2ANet
在一般的的目标检测项目中,我们通常使用水平矩形框为检测框对目标进行框定。而在产业场景中,例如质检、遥感图像,目标往往是任意方向排列且长宽比差别比较大的, 用水平矩形框则会出现大量空白非目标的区域,且丢失了目标的朝向角度信息,例如图5 精度不能满足业务需求。旋转框目标检测算法就可以很好的解决这类问题,它在检测出四边形矩形框的同时可以同时获得旋转角度。PaddleDetection 2.0本次的升级,就新增了高性价比旋转框检测算法--S2ANet,方便开发者直接取用或进一步开发。
图5 传统检测效果 图 6 S2ANet旋转框检测效果
版权声明:本文为原创文章,版权归 头条123 所有,欢迎 本文,转载请保留出处!